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XIX. On the Differential Equations which determine the form of the Roots of Algebraic
Equations.

By GEorGE BooLE, F.R.S8., Professor of Mathematics in Queen’s College, Cork.
Received April 27,—Read May 26, 1864.

1. Mr. HARLEY * has shown that any root of the equation
y—ny+(n—1)r=0
satisfies the differential equation

(D 2n;—1) <D_3n;2) . (D_”‘z—:+l>
(n—=1)9 p;
v D=1 ..D—n+1) € y=0,. . . . (1)

in which ¢’=x, and D= :%’ provided that » be a positive integer greater than 2. This

result, demonstrated for particular values of n, and raised by induction into a general
theorem, was subsequently established rigorously by Mr. CAYLEY by means of LAGRANGE’S
theorem.

For the case of n=2, the differential equation was found by Mr. HARLEY to be

y—D];%e"y=%e". Y )

Solving these differential equations for the particular cases of #=2 and n=S3,
Mr. HARLEY arrived at the actual expression of the roots of the given algebraic equation
for these cases, That all algebraic equations up to the fifth degree can be reduced to
the above trinomial form, is well known. ’

A solution of (1) by means of definite triple integrals in the case of n=4 has been
published by Mr. W. H. L. RussELL; and I am informed that a general solution of the
equation by means of a definite single integral has been obtained by the same analyst.

‘While the subject seems to be more important with relation to differential than with
reference to algebraic equations, the connexion into which the two subjects are brought
must itself be considered as a very interesting fact. As respects the former of these
subjects, it may be observed that it is a matter of quite fundamental importance to
ascertain for what forms of the function ¢ (D), equations of the type

w+eD)eu=0 . . . . . . . . . . . (3

admit of finite solution. 'We possess theorems which enable us to deduce from each
known integrable form an infinite number of others. Yet there is every reason to think
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734 PROFESSOR BOOLE ON THE DIFFERENTIAL EQUATIONS WHICH

that the number of really primary forms—of forms the knowledge of which, in combi-
nation with such known theorems, would enable us to solve all equations of the above
type that are finitely solvable—is extremely small. It will, indeed, be a most remark-
able conclusion, should it ultimately prove that the forms in question stand in absolute
and exclusive connexion with the class of algebraic equations here considered.

The following paper is a contribution to the general theory under the aspect last
mentioned. In endeavouring to solve Mr. HARLEY'S equation by definite integrals, I
was led to perceive its relation to a more general equation, and to make this the subject
of investigation. The results will be presented in the following order :—

First, I shall show that if « stand for the mth power of any root of the algebraic
equation

yn_xyn—l —1=0,

then u, considered as a function of #, will satisfy the differential equation
[DJut [“ D42 1] (———— )m:o,
in which =4, D=2, and the notation

di
[} =a(a—1)a—2)..(a=0-+1)
is adopted. '

Secondly, I shall show that for particular values of m, the above equation admits of
an immediate first integral, constituting a differential equation of the n—1th order, and
that the results obtained by Mr. HARLEY are particular cases of this depressed equation,
their difference of form arising from difference of determination of the arbitrary con-
stant.

Thirdly, I shall solve the general differential equation by definite integrals.

Fourthly, I shall determine the arbitrary constants of the solution so as to express
the mth power of that real root of the proposed algebraic equation which reduces to 1
when #=0.

The differential equation which forms the chief subject of these investigations certainly
occupies an important place, if not one of exclusive importance, in the theory of that
large class of differential equations of which the type is expressed in (8). At present, I
am not aware of the existence of any differential equations of that particular type which
admit of finite solution at all, otherwise than by an ultimate reduction to the form in
question, or by a resolution into linear equations of the first order. It constitutes, in
fact, a generalization of the form

—_— 2
u—]—@]ﬁ]—)?f—li)ﬁ e*u=0

given in my memoir “On a General Method in Analysis” (Philosophical Transactions
for 1844, Part II.).
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Formation of the Differential Equation.— General finite integral.

2. ProrosirioN.—If u represent the mth power of any root of the algebraic equation

yr—ay='—1=0,
then u, considered as a function of x, satisfies the linear differential equation
P (502 ] (Bt
in which e’=x, and Dzé‘%.

And the complete integral of the above differential equation will e

V15 Ya» -V being the n roots of the given algebraic equation.
Representing 3" by z, we may give to the proposed algebraic equation the form

z=b+xz%_j, e )
in which 6=1. Hence by LAGRANGE’S theorem
moom o on=lg/m d (2= g m\ g2
u:zn=5n+bn%(bn>x+%(5 : %6">r§+&c.,. L@
the general term of the expansion being
d\ 71 (_rr=1) d m 2"

which, on effecting the operations indicated, becomes
— r—1 m-—r
m[—_m+r§z” 1)—1] b

n[r]”
We see then that » is expanded in a series of the form

wy v a+ua+ &c. ad inf.,

N €3

in which, since =1,

" m+(n—1)r_1 r=1 (l)m;"
u,z[ ””nw] " N )

and this expression will represent the first term as well as the succeeding coefficients
of the Lagrangian development, provided that we interpret the form [ p]° by 1, and

1y —.
()7 by ;57

1
As 17 admits of » distinct values, the above development may be made to represent
the mth power of any one of the » roots of the given algebraic equation. In particular,
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1
if we give to 1» the particular value 1, we have
m+(n—1)r -1
]
nlr]” ’
and the expansion then represents the mth power of that particular root which, when
2=0, reduces to 1. The law of the series upon which the formation of the differential

equation depends is, as we shall perceive, independent of these determinations.
Changing r into #—n, we have

N

ur—-n -

U,

nlr—n]™"

whence the law of the series is seen to be

[r]ru,.}.[ﬂt%:l).’f_qn_l(%_%’—l)un_,:m N ()

and therefore, by what is shown in my memoir ¢ On a General Method in Analysis,” the
differential equation defining » will be

[D]m+[l”ii’%:ﬂ?_1]”"(g_%'—1)eﬂmzo,. L@

in which = and D=§% .

3. As u may here represent the mth power of any of the roots of the given equation,
it is evident that the general integral of the above differential equation will be

w=Cyr+Cyr..+Cyr, . . . . . . . . . (7)

exception arising, however, in the case in which for a particular value of m the n parti-
cular integrals 47, 47, .. 7 cease to be independent. In such cases the above value of u
constitutes an integral, but not the general integral of the differential equation.

For instance, if m=—1, and if we reduce the given algebraic equation to the form

™) +ay—1=0,

it is evident that, except when n=2, we shall have
g Ay =0.
u=Cyr'+Cy". . +Cya’

Here then

may be reduced to the form
w=(C,—C, )y +(C,—Coyy . . +(Coei — G,

virtually involving but »—1 arbitrary constants.
Such cases of failure may, however, be treated by giving to the integral a form which
for the particular value of m shall become indeterminate, and then seeking the limiting
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value. In the above example we may write
m m (i /Y
u=01.% . +Cn—lyn—-l +Cn:l'/‘l"“ym1‘+“l—‘— ?
the last term of which becomes a vanishing fraction when m=-1. The true limiting
form is seen to be

u=Cyr'.. +C,,9;2,+C. (97 logy,. . +y7t ogy,). -+« o (8)

This is the complete integral of (I.) when m=—1.
4. The theory of these failing cases may be viewed also in another aspect. When

w=C4+Cm. A+CH™ .« o e e e e e e e . (9)

is an integral, but not the general integral of the differential equation (I), it must be
the general integral of a differential equation involved in (I), but of a lower order. We
may in fact conclude that such reduced differential equation will be deducible from the
higher one by a process of integration. Let us apply this consideration to the foregoing
example,

When m=—1, the equation (I) becomes

D(D—1). .(D=n+1)u4+[ 2} D—3~1]" (D—n+ e u=0.

Hence operating on both members with (D—»+1)"", we have

D(D-1).. (D-n+2)u+% ["— ! D'—}l_z"_ 1] " gy == Cg18,

n

It must then be possible to determine C so as to cause this differential equation to be
satisfied by (9). First let us seek to determine C so as to cause the equation to admit
of any of the particular integrals ¢, 4, ..y Substituting for « the Lagrangian expan-
sion reduced by making m=—1, and giving to b any of the particular values included

in the form 17l-', we shall, on equating coefﬁcients, find

c=" ["'_,3]"*2 ,

- n
whence it appears that if n be greater than 2, C=0. Thus the reduced differential

equation becomes
s e e e PN ¢ 1)
and this, when » is greater than 2, is satisfied by
M=Clyf‘+02 ;l' -+Cn?/;l:‘v

which in effect contains n—1 arbitrary coﬁstiz_nts, and so constitutes the complete inte-

gral of the differential equation.
If n=2, the differential equation becomes

Dut+3(3D—Peu=31¢ . . . . . . . (1)
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which is satisfied by u=y;" and by u=y;", but, as is evident from its unhomogeneous
form, not by u=C,y7'+C,y;’. In this case, in fact, the condition y;7'+#;'=0 not
being fulfilled, the primary differential equation (I) suffers no change in the form of its
general solution.

Mr. HARLEY'S results are in effect transformations of (10) and (11). Since u=y",
it is seen that u will satisfy the algebraic equation

| u_"+.m-—1=0.
Transform this by assuming
1 1
=-—n(1-—n) o w=(1—n)""a' "nd,
and we have
u'™—m 4 (n—1)a'=0,

which is Mr. HARLEY'S algebraic equation in form. Hence, if #/=¢" and D' =%, we
shall have

i i 1-n 1—-n, L _ly n

E=—n(l—n)"e"", u=(l—n)re *v, D=7—D.

And (10) will become

01"_1?' ]”—le'%*”w+,l‘,[—ﬁD’—,l,’-1] n—l(—n)"(l —n)‘“"ec‘*”‘%)"'ueo.

Multiply by ) ?, and we have

D'—n+t+l1—= "
{ a ) ] 0l [ =D 2P )= (L)~ =0

Now
(D!._n+ 1—-——)_‘ - _ om 1t

l_ - [l—nD,+n— M] =(— l)n—l[n 1 D'— n—1 ’

and
[_Dl+n_f_2]n—l=(_1)%—1[1’)/]”.—1.
Hence
[0 =2 = (25) T T w=0,

or

et (n—=1\"""T n on—1 1)’
] lu'_< n > - [ i R Ty =0,
which is Mr. HARLEY’S equation (1), art. 1. When n=2, we obtain from (11), by the
same transformations, Mr. HARLEY'S second equation (2), art. 1.

- Not only for the particular value m=—1, but apparently for all integer values of m,
the general differential equation (I) admits of one integration. It may be said that
while the differential equation determining the form of the mth power of a root of the
algebraic equation is in general of the nth order, this equation may, when m is an integer,
be reduced to an equation of the #—1th order; not, however, like the higher equation,
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unvarying in its type. I have thus verified some other particular forms obtained by
Mr. HARLEY.

Solution of the Differential Equation by Definite Integrals.

5. On account of the difficulty of the investigation, I propose to employ two distinct
methods leading to coincident results.

First Method.—Operating on both sides of the given differential equation (I) with
{[D]"}~, we have ‘

[ D+——1] (9—%’—1)

C,, C,, .. C,_, being arbitrary constants. Let us represent

eu=Cy+Cpé.. +-C,c™™, . . (1)

l

whatever the nature of the subject U, by ¢U, then the differential equation becomes
wte u=C,+Cé .. +C,_ e,

or

(14e)u=C, 40 - . +C, 9
u=(1 +E)—1{CO+0139 o FC,_ om0} =2i0i(1+§)_’6w,

the summation extending from ¢=0 to ¢=n—1.

Now _
(14e) e’ =(1—e+¢—¢"..)e"
But if ‘
(i) (3-1)
o(D)= s
we have

geio =¢(D)en90i0’

§26i0= @(D)en0¢(D)e(n+i}9= ¢(D)¢(D — n)e(2n+i)9’

e?é?=o(D)p(D—n). . <p<D--( p—l)n)e(l’”“)".
But from the form of ¢(D) it is easily seen that

i_%l D+%_1‘lz(n—l)[ ___1]
—_—r)= L
¢(D)¢(D—n)= e
and generally
n—1 p(n—1)
| (o] 2-0T
#(D)g(D—n). -¢(D—<p—1)n)= B
-lp(n-nl:_g____l]
g”e""——L— L ¢

[D]7
MDCOCLXIV. 5
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Now
[af=a(a—1)..(a—0+1)
P(a+1)
“T(a—b+1)’

provided that ¢+1 and ¢—5b-1 are positive. This law we can extend symbolically to
expressions in which D appears, provided that, in the application of the symbolic forms
thence arising, D shall admit of an interpretation which shall effectively make the sub-
jects of the symbol I" to be positive numerical magnitudes. Under this condition we

have then
I‘(”_ID+ﬂ I‘(E—@>
il m e r/EZ_m_
Pyt — P( + pin ) < ) ol +io
§ TOTD
I'D—pn+1)
=P(D)¥(D)e?*,
where
(50 (-2)
O(D)= TOT1)
¥(D)= T'D—pn+1)
)
Now
T(D)e(pn+z)9 ‘\P(Pn_l_,&)e(pn+t)9
— T'(i+1) pras
e
We see then that the conditions
(n=1)i4+m=0, ¢—m=0 . . . . . . . . . (3

must be satisfied. For ¢=0 these conditions are inconsistent, and the proposed employ-
ment of I therefore unlawful. For values of ¢ greater than 0 the conditions will be
found to amount to this, viz. that m must lie between the limits —(n—1) and 1. We
shall suppose m thus conditioned, and shall consider first the case in which 2> 0.

Here then we have, interpreting D by pn-+¢ in ¥(D), but leaving it unchanged in

o(D),
) r(*~1pi™\r D_m
Pl — ( n ”) (” ”) T(@+1)

4 T(D+1) P(” L >F<i_m)e(”"+")9,' e ()

n

it being seen that if we similarly interpreted D in ®(D) the conditions relative to I’
would be satisfied throughout.
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Hence if we write

F(z+1

)
(- i+

(1—gt¢—g+ &)= ro ) G=

=

we shall have

P(D = 1 A (ew 6(n+z\0 +6(2n+ Dl &C )
D m
T n— m)r <,,___>
_ ( Ajet®
- TD+1) T+er
and therefore '

("= 1 D m
z,-oi(1+g)-*ew=zi( T T)l)( D) P e )

the summation extending from ¢=1 to ¢=n—1.

Consider next the case in which ¢=0. We have, when p is not less than 1
ép00=€p~1500
=g”_l(p(D)enoCO
=C,p(n)e?~'e™.
But changing in (4) p into p—1, and ¢ into #,

~(n—1 m D m
Ep_leio_—_I‘( n D+;>T‘(7,—n) T(n+1) -
I'D+1) I‘(n—l-{-%@)r(n;m) .
Hence, if we write
T'(n+1) \
Cocp(n)r Y= =—A, . . . . . . )
(=17 (57)

we have for all positive integral values of p,

PR G

and therefore

P(TDJr%)F(%'%
(l—g+g—e*+ &c.)Cy=Cy+

(1+'g)-’0(,=co+r< i o)
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Combining this with (5), we find

n=lp,m )I‘(D m
n {A (A 4 Ane”"}

o
u=Cyt INOJES) 14e¥

r(*=lp™\p(2_m
—=C,+ n n nn D-! A+ Age®.. + A0
- ') 14em

Now, resolving the rational fraction, we have

F AP A
146 =D

D A

0 9
e9+1—f ef"’ -+ 1 1:3 e"}
=B, log (1—u,¢’)+B,log (1—e¢’).. + B, log (1—a,¢’),

0y Oy «. &, being the nth roots of —1, and B,= ——“ﬁ' Hence

i

r(es)e(d)
w=C,+ F?D) L2 B log(1—ed).. +B,log (1—ee)}. . . (6)

In this expression B,, .. B,, being generated from the arbitrary constants C,, C,, .. C,_,,
may themselves be regarded as arbitrary constants. And this being done, C, will become
a dependent constant, the form of which it will be necessary to determine.

First, however, let us endeavour to interpret by a definite integral the symbolic
function of D.

We know that « and & being positive quantities,

INGINON i1 _ dt et
I'(a+0) = dt ¢ (1 t)b — (1 I—l)‘“'b

If we employ the second of these forms, we shall have

v—lp i ™\p(D_™
I‘( P D;Z}% (n >¢(ee)_5‘ dtt(”Ht_D )

n—1

i (E) v

-1
("o #0122
__j; dt ¢ cp( L
by a known symbolical form of TAYLOR’s theorem. Hence if

n—1

i n
+¢

=T,

[

we have

u__C-l-By dt £+ log (1—uTe") - +B, f dt 7 log (1=, Te). . . ()
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6. In determining C, the following theorem will be of use, viz.:—
If' r be a positive integer, and a positive and less than x, then

[r—a—1]""1%

T(@)I(r—ae)= s N €3))

This may be proved as follows :—
Let ¢ be the greatest integer in @, and let ¢—i=a’. Then

T(e)'(r—a)=[a—1]T(d) X [r—a—1T"""T({1—d').

But ¢' being a positive proper fraction,

I )T(1—d)==—=

ond sin a7r)
[e—1T=(a—1)(a—2).. (a—1)
=(—1)(i—a)(t—a—1)..(1—a),
[r—a—1]""'=(r—a—1)(r—a—2)..(i—a+1);
[r—a—=1]7"""e—1]=(-1)(r—a—1).. (i—a+1)X(i—a)..(1—a)
=(=1)[r—a—17]""
Hence
T(e)l(r—a)=(—1)r—e—17 ‘sm aay’
But

sin (¢'#) = sin (ax —iz) =(—1)'sin(ar),

_ [r—a— l]"“]m‘
I(a)'(r—a)= = @
as was to be proved.

Now in the instance before us we have by (5')

C,= _A:'(”"l +%)P(n;m) ,

- T'(n+1)p(n)
[n+n—z—2 n—.'l -
LT
Hence, since I'(n+1)=[n]",

r(n-142)r(1-1)
CO=An >

m n—1 m 3.

where

wherefore 1-—% being a positive quantity, and n a positive integer, we have, by the
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above theorem,

gy mn
(-

[n—2 +-@]""w
n )

Accordingly
Ax
C°= m . mw
— 81N —
n n
But since
N,¢ Nae? Al + A
1—oef 1 —ene? 14 e ’
we have

=(=1y (B,.-+B,)x(=1)

‘ . = Bl .t + Bn .
Therefore, finally,
‘ _ B,+B,..+B,
Co= m . mw
72- S 7

Substituting in (7), and replacing ¢’ by &, we have

_(By+By-- +

m . mw
-— S —
n n

W

B")”+B1j dt t%_llog(l—oale)-f+BJ "t ¢ log (1—aaT), . (9)
0 0 '

wherein, it must be remembered, that «,, «,, .. @, are the several ath roots of —1, and

n=1

tn

T=1+t'

And this is the general integral of (I), B,, B,, .. B, being the arbitrary constants of
the solution. o '
Second Method.—1T. For the finite solution of differential equations of the form

F(DW-f(D)eu=0,

it is usually convenient to reduce them to the form

ID no, -1
u+eroED;e w={f(D)}™0,
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which falls under the geveral type
u+o(D)eu=0,. . . . . .o (1)
U being a function of 4 when the inverse operation { f,(D)}~*0 has been performed
The theory of equations of the above type has been discussed fully in my memoir
“On a General Method in Analysis.” In particular it is there shown that the above
equation can be converted into another of the same type,

v4+4(D)ev=V,

by assuming

¢(D) _[pe@®d\
u=P, 50, V_{P,,M )} U, ()

p 2D _ eD)e(D—n¢(D—2n)..ad inf.
(D)™ ‘4’( JW(D—n)y(D—2n).. ad inf.

This theory I shall apply here, not to the ordinary finite solution, but to the solution
by definite integrals of the differential equation (I). In doing this I shall give to U and
V the particular values 0. We are justified in doing this by the canons relating to the
arbitrary constants which are laid down in the memoir; butit will suffice here to direct
attention to the fact that while the processes employed are strictly speaking particular,
they lead to a solution involving the requisite number of arbitrary constants, and at
the same time of the proper form, as manifested by the succession of the indices in its
development.
Giving then to (I) the form

L5 )

(]

where

3”9’&6 —_ 0 i

assume as the transformed equation

v+ @lT,;e”"vz(). '

w=P, {[ 'D+2-1] (————1)}v.

P, [——D+-_1]""— ———D+——1) <—D+—-—2> .. ad inf,,

Then by (2)

Now

since representing [—;—D+%Z—]:|n_.]l by ¢(D), the first term in the factorial expression

of p(D—mn) will so follow the last term in that of ¢(D) as to leave the law of factorial
succession unbroken. Again, if A’ be any term in the development of v, we have,
¢ being a positive integer,

("7 +5-1) (5 D42 -2)..A¢"
=A, <n“%”1' 73+%L,—1> (nZI %—2) .60

= Ai cr (n ; ! 73) 659,
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C being a constant, the value of which does not change with 2. Hence we may write

n—1 n—1 m
—_—_-CI‘(—n—-D-l-;),

P, (7-5—1)=CT(3-%)-
n

The legitimacy of the introduction of I" depends upon the condition

P n

and in like manner

n—1

z+ >0, —-—>O

so that the value ¢=0 is inadmissible, as we have already assumed. Moreover 7 must
lie between the limits —(n—1) and 1.
Since ¢’=ua, the equation for v is equivalent to

dm
T v=0

whence
v=c,e""+c,e*". .+,

in which e, @, .., are the nth roots of —1. This value of v can be expanded in
ascending powers of & in the form

v=u0,}+v,2+0v,2*+&ec.
=v,+v,6° +v,6" + &ec.

Hence u—u, representing that part of » which contains positive and integral powers
of x, we shall have 4

u—u,=COT (*=2 D+ Z)1(2-2) (0~0,).
Now v—2,=C,(¢"*—1)+Cy(e=*—1). .4 C, (e»"—1)
=3Ce*—1),

the summation extending from ¢=1 toé=n. Hence, merging CC' in the arbitrary con-
stants C,, .. C,, we have :

&_u0+201‘(——~D+m)F<%—§)(e“i”—1), G

in which x=¢"

This expression we now propose to' interpret by definite integrals.
Now e“i’”-—lzfoo,-e“i"dk.
0
Substituting and merging ; in the arbitrary constant G, we have

u=1u,+3C, F(— D+ m) I’(g -—%&)j‘zeuihdk
n=lpam_, (*° D m_, (=
=0, -3C, f dse—s = O j' dte=n e
(1] ] (1]
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on interpreting the I" functions in the usual manner: We may therefore write

n—1

—11
® M m m s M g™
u=uo+20if jv dsdte=¢+0 sn! t'Tlf ¢ dh,
0 0 0
since by the symbolical form of TAYLOR’S theorem
no1p D =1 1\D ne1 1
s Dt"go(w)=(s n t") qb(w):qa(x » t%).
Let us now transform the double integral relative to s and ¢ by assuming
s=vt,

and making v and ¢ the new system of variables. 'We shall have

dsdt=tdvdt,

while the limits of v and ¢ will be 0 and c. Hence

n—1

il G m aw 7 ¢
u=“o+20i5‘ y dvde=+ s t—ly " dh.
0 0 0

Again, transform the double integral relative to # and A, by assuming A=%¢y. We shall
have dh=tdy, and the limits of y will be 0 and o ‘Whence

n—1

u=u0+205y j‘ J‘W " d@dtdyg—(Hv-—aiy)t?)%—l.
0 Jo Jo

Integrating with respect to ¢, we have

n—1

u=u0+ZCiywd@)§m " dy

Z
v
1 +'I)—o¢,;y ’

Now integrating with respect to ¢, and merging :—;—! in the arbitrary constants,
u=u0+ECJ dv v%—l{log<1+@,—a,-vaﬁ;—l) —log(1 —H;)}
0

- zcrd 2 log| 1% o B
=y} i), vor log| 1—=—

It remains to determine u,.
Developing the function under the sign of integration in ascending powers of &, and
effecting the integration for each term separately, we find, for the coefficient of 4", the

expression
I‘<@+n_1>r‘<1—ﬁ>
'L&,,: 202 n n .

nl'(n) ’
MDCCCLXIV. 5¢
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but from the law of the series as expressed. in (6), art. 2,

(=] " x(-5)

T []" "
I‘< n— 1)I‘<1—1”->
w,=2C; m[m_}_n_g]"_l

=30, —

Equating these values,

by the reductions of art. 6.
Hence, finally,

2 sin 2T
n n

=3 +20f dv v~ log(l a,l;;), ... ()

which agrees with the previous result.

Determination of the Constants.
8 I propose here to determine the constants of the general integral (II), so as to
obtain an expression for the mth power of that particular (real) root of the equation
y —zy" ' —1=0
which becomes unity when #=0.
‘We have

+EC§ dvarllog(l—awV), N )

—_ sm——
n n

n—1
where V=% , and «; represents in succession the different nth roots of —1.

The coefficient of 4" in the expansion of this value of % in ascending powers of & will

be found to <be
Ci : n n

rI(r) ’
and its coefficient in the expansion of y™ by LaerANGE'S theorem is, for the particular

root in question,
m+n—1)r 7
N
n[r]”
m+(n—1)r "
m[HEE]

S

equating which we have

ZCi“;;-: -
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But by the theorem of art. 6,

r(mf (o ??")r(”jz?”) —._—1‘(’.’ —nm)r(r—’"—nm>
_ [ _r;m_ 1] -1 ™

. (r—m
sin[ — =

Hence

m sin (7:—7371')
2,-0506:= _'—'—'-_n—— . . . - . . . . . . (2)

Giving, in this equation, to 7 any particular system of n# values, we shall obtain a system
of n linear equations for the determination of the # constants C,, C,, .. C,. 'We shall
form this system by giving to # the values 1, 2,..n.

Now «; representing any particular root selected from the series a,, a,, .. ,, multiply
the above typical equation by e}, and then, giving to 7 the successive values 1, 2..n,
form the sum of the equations thus arising. The result may be expressed in the form

. m . [r—m _
25052#204}‘"=—;;2,sm(TW)a}' o e e oo (3)

the summations with respect to ¢ and » being both from 1 to % inclusive.

But

2 =00 o o

:“i(“j_l -|-06,;06;-l_2 o +06i _l)

7 7%
=o¢.uj —%
laj— o
Now when ¢; is not equal to &, this expression vanishes, since af=a}=—1. When,
. “@_“@ . . . . o, .
however, o;=«;, the fraction - becomes indeterminate, and its true limiting value is
oo

seen to be na=—mn. Hence (3) becomes

m . r—m
p— IS n—7r
_an__MSrmn( - 7r>oc7. R

CJ-:?{;—:; 3, sin (%;lzw)a}”'y. N )
We have thus solved the linear system of equations. 'We have still to reduce this solu-

tion by effecting the summation in the second member.
%G+l , .
Now to «; we may give the form en ', which will represent all the nth roots of — 1

in succession if we give to j the series of values 1, 2, .. n. Hence substituting for o;
562
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the above value, and giving to sin (7?—”_1 71-) its exponential form, we have

m—r——(2j+l)rﬂ_}\,_l —(m—r)-—(27'+l)r,”,_l
n —_ n

e

. [(m—r _ e
3, sin (-~n 7r> %" =3,

24/ —1
mr -1 —2rm m=my_, ot LY
_en £ 7 —e n >.e
- 2y —1

Now in general
Ereko'wy—l=ekwv—l +e2k1n/—1 ... _l_enk-:n/—l

e(n+1)k1r,\/—l — ek‘ir/./—l

ekﬂJ—l_l
Ko+ ek—;’—w" ,__e:%@,l"‘
=¢ ? LV —kmr =1
&z —e 2 Vv
. knm
KatD, S —5-
=e * kx
sin —
2
. . 2(74+1
Putting therefore k= ——(%I'—),
—2GED ,_ =GED@ED, e
we have Se n =g w s lr
R
sin
n
» —_ _2j
and putting k=e =
—orr =+ _ e
re—-n——a/ 1 ____6—’—%——“/ lsmj-ar.
sin’Z
n
"I D=1 gin (j 4 W
n WHLT
e m—r 1 n
Hence E,sm( " '71")0&‘_'='2—~'/—:1* . L
— =2 Dy 1 sin
sin’Z
n
sin (j41)7
NOW ——%—)—-:0
. (J+ )
sin ~—

for all values of 7 taken from the series 1, 2, .. n except the value n—1, for which the
expression becomes indeterminate in form, and has for its true value

wCOSNw NCOSNw

x nw~ . COST
—C0S —
n n

=4mn,

as n 18 odd or even.



DETERMINE THE FORM OF THE ROOTS OF ALGEBRAIC EQUATIONS. 751

sin 77r

sm"—-
n

=0

So too

for all values of j taken from the series 1, 2, .. n except the value #, for which its true
value is
n cosnw
cos w

=-4n
as » is odd or even. ,
Hence when j stands for any of the integers 1, 2, .. n—2, we have

s fm—r —_—
2,s1n(Tw) ;7 "=0.
When j=n—1, we have

m—n(n+1) =1

3 sin (P Yo = g

the upper or lower sign being taken according as » is odd or even. To the second
member we may give the form

g 6n '™ (008 (- 1)r—y/—Lsin (n ) =5y en

since sin (n41)7=0, cos (n+1)r==1, as n is odd or even.
Thus when j=n—1, we have

. m—1r —_—— n mr =1
2,.s1n(Tw)aj =gv-1¢" -

In the same way when j=n, we find

—-mm

p sm(———qr)oc, = 2«/-—16—% .

It results therefore that, according as j is less than n—1, equal to n—1, or equal to
n, we shall have

2 ors—1 —_—ra—1

. n —me™
C=0, or * ¢ ___ or—2
’ i ’ . 24 —1

-m

In the general integral (II), art. 7, we shall therefore have

m e7‘_~, e S ade m mr
SC="1c _—°¢ J=Tgsin-——»
Y ] 24/ —1 nw n

mr oy

u—1+ {24/ 1 dv'vn "log(1—a,_,2V)— 24/ 15. dv v~ log(l—me)} (%)

n—1

where V=f

Fo
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— p2m—=1)+1 -1 p2n—1 =] e p— -1
NOW “n_l_e( (n—=1)+1)mwy/ __e(’ﬂ LIV = L% R

o, =e(2n+l)1r4/—l — 1r4/—l;

therefore, finally,

u=l4 " l{en“/_lj:) dv07'110g<1—67‘/"xV> fdvvn 1og(1—en 'y )} (6)

It is seen, from the form of this expression, that it represents a real value,

1
If we substitute v for v», a change which does not affect the limits, there results

{ m___‘er/ 1 * - mm * T
=y"= Len T duortlog (1—ew VTV ). —7“"1§ dv olog (1—e=V " gV T1T
" y 1 ¢ 5; vy Og( ¢ z ) ¢ 0 i Og( ¢ z ) 2 ( )
in which This expression we shall now reduce to an equivalent real form.

Reduction of the expression for y™.

9. We shall somewhat simplify the general expression above found for y” by inte-
grating by parts. The integrated portion will be found to vanish at both limits.

Representing ‘%’ by V', we have

ymvm“log (1 —eénir‘/"le) dv=1v"log (1 e ”’xV> +xe£n"r“/ “S oV

X
en V!

1— 2V

Now, expanding the logarithm in the integrated portion, and putting for V its value

T :_—; , we see that that portion will consist of a series of terms of the form
Agmta—1)r
(o)

r being for each such term a positive integer.
All these terms vanish when v=0, since, by the conditions to which m is subject,
m—4(n—1)r is positive.
Again, they vanish when v is made infinite, since in this case
A,vm+(n—~l)r_ I

ey

and, by the conditions relative to m, the index m—r is negative.
We have, then, on applying the above reduction to the terms of the general value
of ",

(m=D)m ® 1 —m=D)m ® !
01—z Ve n¥-? 0 l—xVeﬁ“/']I
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Now substitute for the imaginary exponentials their trigonometrical value, and there

results
w * (s n(mT_l 7r> —zVsin w%r> v"V'dy,
0

1—22V cos "7—:+.7ﬂV2

As « enters this expression only in combination with V, it is suggested to us to repre-
sent 2V by V. If we do this the final theorem will be
TrEOREM. If y™ represent the mth power of that real root of the equation

yn_a;,?/n—l_l___o

which reduces to 1 when x=0, then, supposz’ng m to be between the limits 1 and —n+-1,
the value of y™ will be

1 °°(s.in( ) Vsm——)v’"%dv
ym=1+;5 . (IV)
° 1-—'-2Vcossﬁ+V52
in which
Zv"!
V-=1+v"'

10. Hence too we have the value of a remarkable definite integral, viz.

s (sm -——} m—V sm’-zb—w- —vadv
n dv
0

-=a(y"—1) N ']
1'——2Vcos4;+V2

under the above conditions and with the above interpretations.
It may be desirable to verify this result.

vﬂ—l

Since V=11 T

—_ 2
we shall have %z(n )V 2V

—— g

v A
so that the definite integral is resolvable into

Pym—1 V(sin @—n—2~ V sin )V’dv
(n— 1)5
1—2V cos ;&+ V2

-—N

4

Ve (sin (m—1)m —V sin nﬂ) dv
n n

1——2Vcos:—;+V9
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Now it may be shown that

. [m—1 . mmw
sm( - 7r> -V sm—n-— 1
=3, sin (————— 7r> v,

- n
1—2V cos%+V2

the summation with respect to 7 extending from »=0 to r=co. Hence the first mem-
ber of (V) may be developed in the form

(n—-l)E\f Ui sm( =1 )V”“dv

Ef o s1n<
Ld m,um+(1'+i)(n—l)dfa
m-—1\7r+1 L
Now j;fv Vridy=g j; (EroEs

r m~+(r+1)(n—1) r r—m-+1
= ( nnF(r+2) ( - )“m’

)V’“ dv.

F<m+ 1+ (r+2) (n—-l))r(r—m+ 1))
and j "V Hidp—=g"t2 n 7 2

nI'(r+2) ¥

N ER

n
Z

_m+(r+1)(n—1)
- n(r+1) nl'(r+1)

Hence the total coefficient of 27+' in (V) is

m+(r4+1)(n—1) re—m-+1
sin =720 1“( +rt1 n:~(,~+2)r< t ){n—l_nxﬁﬂ%‘%’;_jﬂ}
=Sin (m_z_l)#]_"(m-i-(r+;)(n_l))1"<r-7:+1) X —-m
nl'(r+1) T

and therefore that of 2" is

sin (m;rﬂ_) I (m—”;n_ 1)> F(r;m> —m

ING) r

()
=[r—1— ] — ( )

Now
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Therefore the coefficient of 4" is

r—mr!
m 7'"‘].— 7 ] L4

nlr]” ’
and this is, by art. 2, equal to #u, in the expansion of ™ in ascending powers of .
Hence, the lowest value of 7 in the expansion of the definite integral being unity, we see
that the value of that integral will be expressed by =(y"—1), as was to be shown.
It will be observed that the function under the sign of definite integration does not
become infinite within the limits. Ordinary methods of approximation might there-

fore be applied. I apprehend, however, that it is not in this direction that the value
of such results is to be sought.

MDCCCLXIV, 5u



